Online seit: 12. April 2006
Chondrules are the millimetre-scale, previously molten, spherules found in most meteorites1. Before chondrules formed, large differentiating planetesimals had already accreted2. Volatile-rich olivine reveals that chondrules formed in extremely solid-rich environments, more like impact plumes than the solar nebula3, 4, 5. The unique chondrules in CB chondrites probably formed in a vapour-melt plume produced by a hypervelocity impact6 with an impact velocity greater than 10 kilometres per second. An acceptable formation model for the overwhelming majority of chondrules, however, has not been established. Here we report that impacts can produce enough chondrules during the first five million years of planetary accretion to explain their observed abundance. Building on a previous study of impact jetting7, we simulate protoplanetary impacts, finding that material is melted and ejected at high speed when the impact velocity exceeds 2.5 kilometres per second. Using a Monte Carlo accretion code, we estimate the location, timing, sizes, and velocities of chondrule-forming impacts. Ejecta size estimates8 indicate that jetted melt will form millimetre-scale droplets. Our radiative transfer models show that these droplets experience the expected cooling rates of ten to a thousand kelvin per hour9,10. An impact origin for chondrules implies that meteorites are a byproduct of planet formation rather than leftover building material.
Mit ihrem EXCISS genannten Versuchsaufbau wollen die Studentinnen und Studenten der Universität Frankfurt die Entstehung von so genannten Chondren untersuchen. Diese spielen bei der Entstehung von Planeten eine Rolle. Dafür wird eine kleine Menge an Sandstaubpartikeln, die sich in einer Glaskammer befindet, Hochspannungsblitzen ausgesetzt. Mit einem Mikroskop wird beobachtet, wie die Partikel dabei aufschmelzen und mit anderen zusammenklumpen. (...)
"Die Idee hinter dem Projekt ist einfach", erklärt EXCISS-Teamleiterin Tamara Koch. "Wir möchten Staubpartikel in Schwerelosigkeit unter ähnlichen Bedingungen kollidieren lassen, wie sie im solaren Nebel geherrscht haben. Die so gebildeten Staubklümpchen beschießen wir dann wiederholt mit Blitzen. Neu an der Idee ist, dies unter realistischen Bedingungen der Schwerelosigkeit und bei geringem Gasdruck durchzuführen. Solche Experimente sind auf der Erde auch in Falltürmen nicht möglich. Die ISS bietet damit ein einzigartiges Umfeld, die Blitz-Hypothese zu überprüfen."